Copied to
clipboard

G = C2×C52⋊S3order 300 = 22·3·52

Direct product of C2 and C52⋊S3

direct product, non-abelian, soluble, monomial, A-group

Aliases: C2×C52⋊S3, C522D6, (C5×C10)⋊S3, C52⋊C32C22, (C2×C52⋊C3)⋊1C2, SmallGroup(300,26)

Series: Derived Chief Lower central Upper central

C1C52C52⋊C3 — C2×C52⋊S3
C1C52C52⋊C3C52⋊S3 — C2×C52⋊S3
C52⋊C3 — C2×C52⋊S3
C1C2

Generators and relations for C2×C52⋊S3
 G = < a,b,c,d,e | a2=b5=c5=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=bc3, be=eb, dcd-1=b-1c3, ece=b-1c-1, ede=d-1 >

15C2
15C2
25C3
3C5
3C5
15C22
25S3
25S3
25C6
3D5
3D5
3C10
3C10
15C10
15C10
25D6
3D10
15C2×C10
3C5×D5
3C5×D5
3D5×C10

Character table of C2×C52⋊S3

 class 12A2B2C35A5B5C5D5E5F610A10B10C10D10E10F10G10H10I10J10K10L10M10N
 size 11151550333366503333661515151515151515
ρ111111111111111111111111111    trivial
ρ211-1-111111111111111-1-1-1-1-1-1-1-1    linear of order 2
ρ31-1-111111111-1-1-1-1-1-1-11111-1-1-1-1    linear of order 2
ρ41-11-11111111-1-1-1-1-1-1-1-1-1-1-11111    linear of order 2
ρ52200-1222222-122222200000000    orthogonal lifted from S3
ρ62-200-12222221-2-2-2-2-2-200000000    orthogonal lifted from D6
ρ73-3-1105452ζ53+2ζ5525ζ54+2ζ531-5/21+5/20-2ζ5452-2ζ52554-2ζ5353-2ζ5-1-5/2-1+5/2ζ52ζ53ζ54ζ55525354    complex faithful
ρ833-1-10ζ54+2ζ535255452ζ53+2ζ51+5/21-5/20ζ54+2ζ535452ζ53+2ζ55251-5/21+5/254553525254553    complex lifted from C52⋊S3
ρ933110525ζ54+2ζ53ζ53+2ζ554521+5/21-5/20525ζ53+2ζ55452ζ54+2ζ531-5/21+5/2ζ5ζ54ζ52ζ53ζ53ζ5ζ54ζ52    complex lifted from C52⋊S3
ρ103-31-10525ζ54+2ζ53ζ53+2ζ554521+5/21-5/20-2ζ52553-2ζ5-2ζ545254-2ζ53-1+5/2-1-5/25545253ζ53ζ5ζ54ζ52    complex faithful
ρ113-31-10ζ54+2ζ535255452ζ53+2ζ51+5/21-5/2054-2ζ53-2ζ545253-2ζ5-2ζ525-1+5/2-1-5/25455352ζ52ζ54ζ5ζ53    complex faithful
ρ1233-1-105452ζ53+2ζ5525ζ54+2ζ531-5/21+5/205452525ζ54+2ζ53ζ53+2ζ51+5/21-5/252535455525354    complex lifted from C52⋊S3
ρ1333-1-10525ζ54+2ζ53ζ53+2ζ554521+5/21-5/20525ζ53+2ζ55452ζ54+2ζ531-5/21+5/255452535355452    complex lifted from C52⋊S3
ρ143-3-110525ζ54+2ζ53ζ53+2ζ554521+5/21-5/20-2ζ52553-2ζ5-2ζ545254-2ζ53-1+5/2-1-5/2ζ5ζ54ζ52ζ535355452    complex faithful
ρ153-31-10ζ53+2ζ55452ζ54+2ζ535251-5/21+5/2053-2ζ554-2ζ53-2ζ525-2ζ5452-1-5/2-1+5/25352554ζ54ζ53ζ52ζ5    complex faithful
ρ1633110ζ53+2ζ55452ζ54+2ζ535251-5/21+5/20ζ53+2ζ5ζ54+2ζ5352554521+5/21-5/2ζ53ζ52ζ5ζ54ζ54ζ53ζ52ζ5    complex lifted from C52⋊S3
ρ173-3-110ζ53+2ζ55452ζ54+2ζ535251-5/21+5/2053-2ζ554-2ζ53-2ζ525-2ζ5452-1-5/2-1+5/2ζ53ζ52ζ5ζ545453525    complex faithful
ρ1833-1-10ζ53+2ζ55452ζ54+2ζ535251-5/21+5/20ζ53+2ζ5ζ54+2ζ5352554521+5/21-5/253525545453525    complex lifted from C52⋊S3
ρ193-31-105452ζ53+2ζ5525ζ54+2ζ531-5/21+5/20-2ζ5452-2ζ52554-2ζ5353-2ζ5-1-5/2-1+5/25253545ζ5ζ52ζ53ζ54    complex faithful
ρ2033110ζ54+2ζ535255452ζ53+2ζ51+5/21-5/20ζ54+2ζ535452ζ53+2ζ55251-5/21+5/2ζ54ζ5ζ53ζ52ζ52ζ54ζ5ζ53    complex lifted from C52⋊S3
ρ213-3-110ζ54+2ζ535255452ζ53+2ζ51+5/21-5/2054-2ζ53-2ζ545253-2ζ5-2ζ525-1+5/2-1-5/2ζ54ζ5ζ53ζ525254553    complex faithful
ρ22331105452ζ53+2ζ5525ζ54+2ζ531-5/21+5/205452525ζ54+2ζ53ζ53+2ζ51+5/21-5/2ζ52ζ53ζ54ζ5ζ5ζ52ζ53ζ54    complex lifted from C52⋊S3
ρ23660001+51+51-51-5-3+5/2-3-5/201+51-51-51+5-3-5/2-3+5/200000000    orthogonal lifted from C52⋊S3
ρ246-60001+51+51-51-5-3+5/2-3-5/20-1-5-1+5-1+5-1-53+5/23-5/200000000    orthogonal faithful
ρ256-60001-51-51+51+5-3-5/2-3+5/20-1+5-1-5-1-5-1+53-5/23+5/200000000    orthogonal faithful
ρ26660001-51-51+51+5-3-5/2-3+5/201-51+51+51-5-3+5/2-3-5/200000000    orthogonal lifted from C52⋊S3

Permutation representations of C2×C52⋊S3
On 30 points - transitive group 30T77
Generators in S30
(1 7)(2 6)(3 9)(4 8)(5 10)(11 30)(12 26)(13 27)(14 28)(15 29)(16 24)(17 25)(18 21)(19 22)(20 23)
(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 5 4 3 2)(6 7 10 8 9)(11 14 12 15 13)(16 17 18 19 20)(21 22 23 24 25)(26 29 27 30 28)
(1 20 27)(2 18 29)(3 16 26)(4 19 28)(5 17 30)(6 21 15)(7 23 13)(8 22 14)(9 24 12)(10 25 11)
(1 7)(2 10)(3 8)(4 9)(5 6)(11 18)(12 19)(13 20)(14 16)(15 17)(21 30)(22 26)(23 27)(24 28)(25 29)

G:=sub<Sym(30)| (1,7)(2,6)(3,9)(4,8)(5,10)(11,30)(12,26)(13,27)(14,28)(15,29)(16,24)(17,25)(18,21)(19,22)(20,23), (11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,5,4,3,2)(6,7,10,8,9)(11,14,12,15,13)(16,17,18,19,20)(21,22,23,24,25)(26,29,27,30,28), (1,20,27)(2,18,29)(3,16,26)(4,19,28)(5,17,30)(6,21,15)(7,23,13)(8,22,14)(9,24,12)(10,25,11), (1,7)(2,10)(3,8)(4,9)(5,6)(11,18)(12,19)(13,20)(14,16)(15,17)(21,30)(22,26)(23,27)(24,28)(25,29)>;

G:=Group( (1,7)(2,6)(3,9)(4,8)(5,10)(11,30)(12,26)(13,27)(14,28)(15,29)(16,24)(17,25)(18,21)(19,22)(20,23), (11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,5,4,3,2)(6,7,10,8,9)(11,14,12,15,13)(16,17,18,19,20)(21,22,23,24,25)(26,29,27,30,28), (1,20,27)(2,18,29)(3,16,26)(4,19,28)(5,17,30)(6,21,15)(7,23,13)(8,22,14)(9,24,12)(10,25,11), (1,7)(2,10)(3,8)(4,9)(5,6)(11,18)(12,19)(13,20)(14,16)(15,17)(21,30)(22,26)(23,27)(24,28)(25,29) );

G=PermutationGroup([[(1,7),(2,6),(3,9),(4,8),(5,10),(11,30),(12,26),(13,27),(14,28),(15,29),(16,24),(17,25),(18,21),(19,22),(20,23)], [(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,5,4,3,2),(6,7,10,8,9),(11,14,12,15,13),(16,17,18,19,20),(21,22,23,24,25),(26,29,27,30,28)], [(1,20,27),(2,18,29),(3,16,26),(4,19,28),(5,17,30),(6,21,15),(7,23,13),(8,22,14),(9,24,12),(10,25,11)], [(1,7),(2,10),(3,8),(4,9),(5,6),(11,18),(12,19),(13,20),(14,16),(15,17),(21,30),(22,26),(23,27),(24,28),(25,29)]])

G:=TransitiveGroup(30,77);

On 30 points - transitive group 30T81
Generators in S30
(1 17)(2 18)(3 19)(4 20)(5 16)(6 21)(7 22)(8 23)(9 24)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 3 5 2 4)(6 10 9 8 7)(16 18 20 17 19)(21 25 24 23 22)
(1 11 6)(2 14 9)(3 12 7)(4 15 10)(5 13 8)(16 28 23)(17 26 21)(18 29 24)(19 27 22)(20 30 25)
(1 17)(2 18)(3 19)(4 20)(5 16)(6 26)(7 27)(8 28)(9 29)(10 30)(11 21)(12 22)(13 23)(14 24)(15 25)

G:=sub<Sym(30)| (1,17)(2,18)(3,19)(4,20)(5,16)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,3,5,2,4)(6,10,9,8,7)(16,18,20,17,19)(21,25,24,23,22), (1,11,6)(2,14,9)(3,12,7)(4,15,10)(5,13,8)(16,28,23)(17,26,21)(18,29,24)(19,27,22)(20,30,25), (1,17)(2,18)(3,19)(4,20)(5,16)(6,26)(7,27)(8,28)(9,29)(10,30)(11,21)(12,22)(13,23)(14,24)(15,25)>;

G:=Group( (1,17)(2,18)(3,19)(4,20)(5,16)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,3,5,2,4)(6,10,9,8,7)(16,18,20,17,19)(21,25,24,23,22), (1,11,6)(2,14,9)(3,12,7)(4,15,10)(5,13,8)(16,28,23)(17,26,21)(18,29,24)(19,27,22)(20,30,25), (1,17)(2,18)(3,19)(4,20)(5,16)(6,26)(7,27)(8,28)(9,29)(10,30)(11,21)(12,22)(13,23)(14,24)(15,25) );

G=PermutationGroup([[(1,17),(2,18),(3,19),(4,20),(5,16),(6,21),(7,22),(8,23),(9,24),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,3,5,2,4),(6,10,9,8,7),(16,18,20,17,19),(21,25,24,23,22)], [(1,11,6),(2,14,9),(3,12,7),(4,15,10),(5,13,8),(16,28,23),(17,26,21),(18,29,24),(19,27,22),(20,30,25)], [(1,17),(2,18),(3,19),(4,20),(5,16),(6,26),(7,27),(8,28),(9,29),(10,30),(11,21),(12,22),(13,23),(14,24),(15,25)]])

G:=TransitiveGroup(30,81);

Matrix representation of C2×C52⋊S3 in GL3(𝔽11) generated by

1000
0100
0010
,
137
9710
882
,
157
249
1010
,
628
5107
516
,
141
010
0310
G:=sub<GL(3,GF(11))| [10,0,0,0,10,0,0,0,10],[1,9,8,3,7,8,7,10,2],[1,2,1,5,4,0,7,9,10],[6,5,5,2,10,1,8,7,6],[1,0,0,4,1,3,1,0,10] >;

C2×C52⋊S3 in GAP, Magma, Sage, TeX

C_2\times C_5^2\rtimes S_3
% in TeX

G:=Group("C2xC5^2:S3");
// GroupNames label

G:=SmallGroup(300,26);
// by ID

G=gap.SmallGroup(300,26);
# by ID

G:=PCGroup([5,-2,-2,-3,-5,5,122,973,7204,1439]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^5=c^5=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b*c^3,b*e=e*b,d*c*d^-1=b^-1*c^3,e*c*e=b^-1*c^-1,e*d*e=d^-1>;
// generators/relations

Export

Subgroup lattice of C2×C52⋊S3 in TeX
Character table of C2×C52⋊S3 in TeX

׿
×
𝔽