direct product, non-abelian, soluble, monomial, A-group
Aliases: C2×C52⋊S3, C52⋊2D6, (C5×C10)⋊S3, C52⋊C3⋊2C22, (C2×C52⋊C3)⋊1C2, SmallGroup(300,26)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C52 — C52⋊C3 — C2×C52⋊S3 |
C1 — C52 — C52⋊C3 — C52⋊S3 — C2×C52⋊S3 |
C52⋊C3 — C2×C52⋊S3 |
Generators and relations for C2×C52⋊S3
G = < a,b,c,d,e | a2=b5=c5=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=bc3, be=eb, dcd-1=b-1c3, ece=b-1c-1, ede=d-1 >
Character table of C2×C52⋊S3
class | 1 | 2A | 2B | 2C | 3 | 5A | 5B | 5C | 5D | 5E | 5F | 6 | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 10I | 10J | 10K | 10L | 10M | 10N | |
size | 1 | 1 | 15 | 15 | 50 | 3 | 3 | 3 | 3 | 6 | 6 | 50 | 3 | 3 | 3 | 3 | 6 | 6 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ6 | 2 | -2 | 0 | 0 | -1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ7 | 3 | -3 | -1 | 1 | 0 | 2ζ54+ζ52 | ζ53+2ζ5 | 2ζ52+ζ5 | ζ54+2ζ53 | 1-√5/2 | 1+√5/2 | 0 | -2ζ54-ζ52 | -2ζ52-ζ5 | -ζ54-2ζ53 | -ζ53-2ζ5 | -1-√5/2 | -1+√5/2 | ζ52 | ζ53 | ζ54 | ζ5 | -ζ5 | -ζ52 | -ζ53 | -ζ54 | complex faithful |
ρ8 | 3 | 3 | -1 | -1 | 0 | ζ54+2ζ53 | 2ζ52+ζ5 | 2ζ54+ζ52 | ζ53+2ζ5 | 1+√5/2 | 1-√5/2 | 0 | ζ54+2ζ53 | 2ζ54+ζ52 | ζ53+2ζ5 | 2ζ52+ζ5 | 1-√5/2 | 1+√5/2 | -ζ54 | -ζ5 | -ζ53 | -ζ52 | -ζ52 | -ζ54 | -ζ5 | -ζ53 | complex lifted from C52⋊S3 |
ρ9 | 3 | 3 | 1 | 1 | 0 | 2ζ52+ζ5 | ζ54+2ζ53 | ζ53+2ζ5 | 2ζ54+ζ52 | 1+√5/2 | 1-√5/2 | 0 | 2ζ52+ζ5 | ζ53+2ζ5 | 2ζ54+ζ52 | ζ54+2ζ53 | 1-√5/2 | 1+√5/2 | ζ5 | ζ54 | ζ52 | ζ53 | ζ53 | ζ5 | ζ54 | ζ52 | complex lifted from C52⋊S3 |
ρ10 | 3 | -3 | 1 | -1 | 0 | 2ζ52+ζ5 | ζ54+2ζ53 | ζ53+2ζ5 | 2ζ54+ζ52 | 1+√5/2 | 1-√5/2 | 0 | -2ζ52-ζ5 | -ζ53-2ζ5 | -2ζ54-ζ52 | -ζ54-2ζ53 | -1+√5/2 | -1-√5/2 | -ζ5 | -ζ54 | -ζ52 | -ζ53 | ζ53 | ζ5 | ζ54 | ζ52 | complex faithful |
ρ11 | 3 | -3 | 1 | -1 | 0 | ζ54+2ζ53 | 2ζ52+ζ5 | 2ζ54+ζ52 | ζ53+2ζ5 | 1+√5/2 | 1-√5/2 | 0 | -ζ54-2ζ53 | -2ζ54-ζ52 | -ζ53-2ζ5 | -2ζ52-ζ5 | -1+√5/2 | -1-√5/2 | -ζ54 | -ζ5 | -ζ53 | -ζ52 | ζ52 | ζ54 | ζ5 | ζ53 | complex faithful |
ρ12 | 3 | 3 | -1 | -1 | 0 | 2ζ54+ζ52 | ζ53+2ζ5 | 2ζ52+ζ5 | ζ54+2ζ53 | 1-√5/2 | 1+√5/2 | 0 | 2ζ54+ζ52 | 2ζ52+ζ5 | ζ54+2ζ53 | ζ53+2ζ5 | 1+√5/2 | 1-√5/2 | -ζ52 | -ζ53 | -ζ54 | -ζ5 | -ζ5 | -ζ52 | -ζ53 | -ζ54 | complex lifted from C52⋊S3 |
ρ13 | 3 | 3 | -1 | -1 | 0 | 2ζ52+ζ5 | ζ54+2ζ53 | ζ53+2ζ5 | 2ζ54+ζ52 | 1+√5/2 | 1-√5/2 | 0 | 2ζ52+ζ5 | ζ53+2ζ5 | 2ζ54+ζ52 | ζ54+2ζ53 | 1-√5/2 | 1+√5/2 | -ζ5 | -ζ54 | -ζ52 | -ζ53 | -ζ53 | -ζ5 | -ζ54 | -ζ52 | complex lifted from C52⋊S3 |
ρ14 | 3 | -3 | -1 | 1 | 0 | 2ζ52+ζ5 | ζ54+2ζ53 | ζ53+2ζ5 | 2ζ54+ζ52 | 1+√5/2 | 1-√5/2 | 0 | -2ζ52-ζ5 | -ζ53-2ζ5 | -2ζ54-ζ52 | -ζ54-2ζ53 | -1+√5/2 | -1-√5/2 | ζ5 | ζ54 | ζ52 | ζ53 | -ζ53 | -ζ5 | -ζ54 | -ζ52 | complex faithful |
ρ15 | 3 | -3 | 1 | -1 | 0 | ζ53+2ζ5 | 2ζ54+ζ52 | ζ54+2ζ53 | 2ζ52+ζ5 | 1-√5/2 | 1+√5/2 | 0 | -ζ53-2ζ5 | -ζ54-2ζ53 | -2ζ52-ζ5 | -2ζ54-ζ52 | -1-√5/2 | -1+√5/2 | -ζ53 | -ζ52 | -ζ5 | -ζ54 | ζ54 | ζ53 | ζ52 | ζ5 | complex faithful |
ρ16 | 3 | 3 | 1 | 1 | 0 | ζ53+2ζ5 | 2ζ54+ζ52 | ζ54+2ζ53 | 2ζ52+ζ5 | 1-√5/2 | 1+√5/2 | 0 | ζ53+2ζ5 | ζ54+2ζ53 | 2ζ52+ζ5 | 2ζ54+ζ52 | 1+√5/2 | 1-√5/2 | ζ53 | ζ52 | ζ5 | ζ54 | ζ54 | ζ53 | ζ52 | ζ5 | complex lifted from C52⋊S3 |
ρ17 | 3 | -3 | -1 | 1 | 0 | ζ53+2ζ5 | 2ζ54+ζ52 | ζ54+2ζ53 | 2ζ52+ζ5 | 1-√5/2 | 1+√5/2 | 0 | -ζ53-2ζ5 | -ζ54-2ζ53 | -2ζ52-ζ5 | -2ζ54-ζ52 | -1-√5/2 | -1+√5/2 | ζ53 | ζ52 | ζ5 | ζ54 | -ζ54 | -ζ53 | -ζ52 | -ζ5 | complex faithful |
ρ18 | 3 | 3 | -1 | -1 | 0 | ζ53+2ζ5 | 2ζ54+ζ52 | ζ54+2ζ53 | 2ζ52+ζ5 | 1-√5/2 | 1+√5/2 | 0 | ζ53+2ζ5 | ζ54+2ζ53 | 2ζ52+ζ5 | 2ζ54+ζ52 | 1+√5/2 | 1-√5/2 | -ζ53 | -ζ52 | -ζ5 | -ζ54 | -ζ54 | -ζ53 | -ζ52 | -ζ5 | complex lifted from C52⋊S3 |
ρ19 | 3 | -3 | 1 | -1 | 0 | 2ζ54+ζ52 | ζ53+2ζ5 | 2ζ52+ζ5 | ζ54+2ζ53 | 1-√5/2 | 1+√5/2 | 0 | -2ζ54-ζ52 | -2ζ52-ζ5 | -ζ54-2ζ53 | -ζ53-2ζ5 | -1-√5/2 | -1+√5/2 | -ζ52 | -ζ53 | -ζ54 | -ζ5 | ζ5 | ζ52 | ζ53 | ζ54 | complex faithful |
ρ20 | 3 | 3 | 1 | 1 | 0 | ζ54+2ζ53 | 2ζ52+ζ5 | 2ζ54+ζ52 | ζ53+2ζ5 | 1+√5/2 | 1-√5/2 | 0 | ζ54+2ζ53 | 2ζ54+ζ52 | ζ53+2ζ5 | 2ζ52+ζ5 | 1-√5/2 | 1+√5/2 | ζ54 | ζ5 | ζ53 | ζ52 | ζ52 | ζ54 | ζ5 | ζ53 | complex lifted from C52⋊S3 |
ρ21 | 3 | -3 | -1 | 1 | 0 | ζ54+2ζ53 | 2ζ52+ζ5 | 2ζ54+ζ52 | ζ53+2ζ5 | 1+√5/2 | 1-√5/2 | 0 | -ζ54-2ζ53 | -2ζ54-ζ52 | -ζ53-2ζ5 | -2ζ52-ζ5 | -1+√5/2 | -1-√5/2 | ζ54 | ζ5 | ζ53 | ζ52 | -ζ52 | -ζ54 | -ζ5 | -ζ53 | complex faithful |
ρ22 | 3 | 3 | 1 | 1 | 0 | 2ζ54+ζ52 | ζ53+2ζ5 | 2ζ52+ζ5 | ζ54+2ζ53 | 1-√5/2 | 1+√5/2 | 0 | 2ζ54+ζ52 | 2ζ52+ζ5 | ζ54+2ζ53 | ζ53+2ζ5 | 1+√5/2 | 1-√5/2 | ζ52 | ζ53 | ζ54 | ζ5 | ζ5 | ζ52 | ζ53 | ζ54 | complex lifted from C52⋊S3 |
ρ23 | 6 | 6 | 0 | 0 | 0 | 1+√5 | 1+√5 | 1-√5 | 1-√5 | -3+√5/2 | -3-√5/2 | 0 | 1+√5 | 1-√5 | 1-√5 | 1+√5 | -3-√5/2 | -3+√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C52⋊S3 |
ρ24 | 6 | -6 | 0 | 0 | 0 | 1+√5 | 1+√5 | 1-√5 | 1-√5 | -3+√5/2 | -3-√5/2 | 0 | -1-√5 | -1+√5 | -1+√5 | -1-√5 | 3+√5/2 | 3-√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ25 | 6 | -6 | 0 | 0 | 0 | 1-√5 | 1-√5 | 1+√5 | 1+√5 | -3-√5/2 | -3+√5/2 | 0 | -1+√5 | -1-√5 | -1-√5 | -1+√5 | 3-√5/2 | 3+√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ26 | 6 | 6 | 0 | 0 | 0 | 1-√5 | 1-√5 | 1+√5 | 1+√5 | -3-√5/2 | -3+√5/2 | 0 | 1-√5 | 1+√5 | 1+√5 | 1-√5 | -3+√5/2 | -3-√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C52⋊S3 |
(1 7)(2 6)(3 9)(4 8)(5 10)(11 30)(12 26)(13 27)(14 28)(15 29)(16 24)(17 25)(18 21)(19 22)(20 23)
(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 5 4 3 2)(6 7 10 8 9)(11 14 12 15 13)(16 17 18 19 20)(21 22 23 24 25)(26 29 27 30 28)
(1 20 27)(2 18 29)(3 16 26)(4 19 28)(5 17 30)(6 21 15)(7 23 13)(8 22 14)(9 24 12)(10 25 11)
(1 7)(2 10)(3 8)(4 9)(5 6)(11 18)(12 19)(13 20)(14 16)(15 17)(21 30)(22 26)(23 27)(24 28)(25 29)
G:=sub<Sym(30)| (1,7)(2,6)(3,9)(4,8)(5,10)(11,30)(12,26)(13,27)(14,28)(15,29)(16,24)(17,25)(18,21)(19,22)(20,23), (11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,5,4,3,2)(6,7,10,8,9)(11,14,12,15,13)(16,17,18,19,20)(21,22,23,24,25)(26,29,27,30,28), (1,20,27)(2,18,29)(3,16,26)(4,19,28)(5,17,30)(6,21,15)(7,23,13)(8,22,14)(9,24,12)(10,25,11), (1,7)(2,10)(3,8)(4,9)(5,6)(11,18)(12,19)(13,20)(14,16)(15,17)(21,30)(22,26)(23,27)(24,28)(25,29)>;
G:=Group( (1,7)(2,6)(3,9)(4,8)(5,10)(11,30)(12,26)(13,27)(14,28)(15,29)(16,24)(17,25)(18,21)(19,22)(20,23), (11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,5,4,3,2)(6,7,10,8,9)(11,14,12,15,13)(16,17,18,19,20)(21,22,23,24,25)(26,29,27,30,28), (1,20,27)(2,18,29)(3,16,26)(4,19,28)(5,17,30)(6,21,15)(7,23,13)(8,22,14)(9,24,12)(10,25,11), (1,7)(2,10)(3,8)(4,9)(5,6)(11,18)(12,19)(13,20)(14,16)(15,17)(21,30)(22,26)(23,27)(24,28)(25,29) );
G=PermutationGroup([[(1,7),(2,6),(3,9),(4,8),(5,10),(11,30),(12,26),(13,27),(14,28),(15,29),(16,24),(17,25),(18,21),(19,22),(20,23)], [(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,5,4,3,2),(6,7,10,8,9),(11,14,12,15,13),(16,17,18,19,20),(21,22,23,24,25),(26,29,27,30,28)], [(1,20,27),(2,18,29),(3,16,26),(4,19,28),(5,17,30),(6,21,15),(7,23,13),(8,22,14),(9,24,12),(10,25,11)], [(1,7),(2,10),(3,8),(4,9),(5,6),(11,18),(12,19),(13,20),(14,16),(15,17),(21,30),(22,26),(23,27),(24,28),(25,29)]])
G:=TransitiveGroup(30,77);
(1 17)(2 18)(3 19)(4 20)(5 16)(6 21)(7 22)(8 23)(9 24)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 3 5 2 4)(6 10 9 8 7)(16 18 20 17 19)(21 25 24 23 22)
(1 11 6)(2 14 9)(3 12 7)(4 15 10)(5 13 8)(16 28 23)(17 26 21)(18 29 24)(19 27 22)(20 30 25)
(1 17)(2 18)(3 19)(4 20)(5 16)(6 26)(7 27)(8 28)(9 29)(10 30)(11 21)(12 22)(13 23)(14 24)(15 25)
G:=sub<Sym(30)| (1,17)(2,18)(3,19)(4,20)(5,16)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,3,5,2,4)(6,10,9,8,7)(16,18,20,17,19)(21,25,24,23,22), (1,11,6)(2,14,9)(3,12,7)(4,15,10)(5,13,8)(16,28,23)(17,26,21)(18,29,24)(19,27,22)(20,30,25), (1,17)(2,18)(3,19)(4,20)(5,16)(6,26)(7,27)(8,28)(9,29)(10,30)(11,21)(12,22)(13,23)(14,24)(15,25)>;
G:=Group( (1,17)(2,18)(3,19)(4,20)(5,16)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,3,5,2,4)(6,10,9,8,7)(16,18,20,17,19)(21,25,24,23,22), (1,11,6)(2,14,9)(3,12,7)(4,15,10)(5,13,8)(16,28,23)(17,26,21)(18,29,24)(19,27,22)(20,30,25), (1,17)(2,18)(3,19)(4,20)(5,16)(6,26)(7,27)(8,28)(9,29)(10,30)(11,21)(12,22)(13,23)(14,24)(15,25) );
G=PermutationGroup([[(1,17),(2,18),(3,19),(4,20),(5,16),(6,21),(7,22),(8,23),(9,24),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,3,5,2,4),(6,10,9,8,7),(16,18,20,17,19),(21,25,24,23,22)], [(1,11,6),(2,14,9),(3,12,7),(4,15,10),(5,13,8),(16,28,23),(17,26,21),(18,29,24),(19,27,22),(20,30,25)], [(1,17),(2,18),(3,19),(4,20),(5,16),(6,26),(7,27),(8,28),(9,29),(10,30),(11,21),(12,22),(13,23),(14,24),(15,25)]])
G:=TransitiveGroup(30,81);
Matrix representation of C2×C52⋊S3 ►in GL3(𝔽11) generated by
10 | 0 | 0 |
0 | 10 | 0 |
0 | 0 | 10 |
1 | 3 | 7 |
9 | 7 | 10 |
8 | 8 | 2 |
1 | 5 | 7 |
2 | 4 | 9 |
1 | 0 | 10 |
6 | 2 | 8 |
5 | 10 | 7 |
5 | 1 | 6 |
1 | 4 | 1 |
0 | 1 | 0 |
0 | 3 | 10 |
G:=sub<GL(3,GF(11))| [10,0,0,0,10,0,0,0,10],[1,9,8,3,7,8,7,10,2],[1,2,1,5,4,0,7,9,10],[6,5,5,2,10,1,8,7,6],[1,0,0,4,1,3,1,0,10] >;
C2×C52⋊S3 in GAP, Magma, Sage, TeX
C_2\times C_5^2\rtimes S_3
% in TeX
G:=Group("C2xC5^2:S3");
// GroupNames label
G:=SmallGroup(300,26);
// by ID
G=gap.SmallGroup(300,26);
# by ID
G:=PCGroup([5,-2,-2,-3,-5,5,122,973,7204,1439]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^5=c^5=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b*c^3,b*e=e*b,d*c*d^-1=b^-1*c^3,e*c*e=b^-1*c^-1,e*d*e=d^-1>;
// generators/relations
Export
Subgroup lattice of C2×C52⋊S3 in TeX
Character table of C2×C52⋊S3 in TeX